

Yoga-Based Interventions for Enhancing Physical Health and Preventing Disease

Dr. Tarek Salah El-Din¹, Dr. Tilak Kumar B S²

¹Professor, Biomechanics at the Faculty of Sports Science, Asyut University, Egypt.

²Physical Education and Sports, Dayananda Sagar University, Bengaluru, India.

Article Info

Article History:

Received Oct 03, 2025

Revised Nov 05, 2025

Accepted Dec 04, 2025

Keywords:

Yoga-based intervention

Vascular function

Endothelial health

Blood pressure

Cardiovascular prevention

Physical health

ABSTRACT

The effectiveness of yoga-based therapies as non-pharmacological methods for fostering physical well-being and averting illness is becoming more widely acknowledged. This study looks at how structured yoga practices can improve important physical health metrics and lower the risk of diseases linked to a certain lifestyle. With an emphasis on hypertension, heart rate variability, lipid profiles, and other associated cardiovascular outcomes, this systematic review attempts to assess how well yoga therapies manage cardiovascular risk factors. Studies evaluating the effect of yoga on cardiovascular health were found by searching a number of internet databases. The inclusion criteria included observational studies and randomized controlled trials that examined how yoga therapies affected cardiovascular risk variables. Key results pertaining to changes in holistic health brought about by yoga practice were identified through data extraction and analysis. The results show favorable changes in physiological indicators linked to illness prevention, as well as notable increases in total physical fitness and functional performance. Frequent yoga practice has been linked to better cardiovascular regulation, increased metabolic efficiency, and improved musculoskeletal health. The study emphasizes yoga as an accessible, affordable, and all-encompassing method for improving physical health and preventing illness. These findings encourage the use of yoga-based interventions into lifestyle management techniques and public health initiatives to lower the burden of disease and enhance quality of life.

Corresponding Author:

Dr. Tarek Salah El-Din,
Professor, Biomechanics at the Faculty of Sports Science,
Asyut University, Egypt.

1. INTRODUCTION

Sedentary lifestyles, which include prolonged sitting, screen time, and little movement throughout the day, have become a major public health concern in contemporary culture. Because traditional physical activities have been replaced by screen-based hobbies, labor-saving gadgets, and technological breakthroughs, sedentary behaviour has become much more common. Socioeconomic variables, restrictions imposed by the built environment, and changing social norms

that encourage and accept sedentary behaviour as the norm all have an impact on this change. Sedentary behaviour has been strongly linked in studies to an increased risk of obesity [1], type 2 diabetes, cardiovascular disease, hypertension, and some types of cancer. Additionally, longer periods of inactivity are associated with greater rates of all-cause mortality. These detrimental health effects are caused by pathophysiological mechanisms such as reduced insulin sensitivity, undesirable lipoprotein formation, & altered vascular function, all of which contribute to metabolic disorders & cardiovascular pathology.

An important measure of cardiovascular well-being and a predictor for potential cardiovascular events is vascular function, especially endothelial function & arterial compliance. Reduced flow-mediated dilation (FMD), elevated pulse wave velocity (PWV) [2], & altered carotid intima media thickness (cIMT) are signs of compromised arterial function in sedentary people. These markers are useful targets for intervention methods to lessen the negative effects of sedentary behaviour because they reflect early, subclinical alterations may precede overt cardiovascular disease.

Yoga has drawn interest as an alternate strategy that incorporates physical postures, breathing exercises, and meditation, whereas traditional exercise modalities like aerobic and strength training are typically recommended to promote cardiovascular health. The effectiveness of traditional fitness and yoga in enhancing vascular function in inactive populations has been the subject of conflicting findings in earlier studies. While some studies suggested that yoga could enhance endothelial activity in hypertensive postmenopausal women, others discovered that 12 weeks of Hatha yoga had no effect on carotid artery compliant or brachial artery flow-mediated dilation (FMD) within sedentary middle-aged and older persons. In contrast, an 8-week aerobic exercise as well as resistance training program in inactive obese females did not significantly alter endothelial function or carotid intima-media thickness [3], according to studies on traditional exercise in sedentary groups.

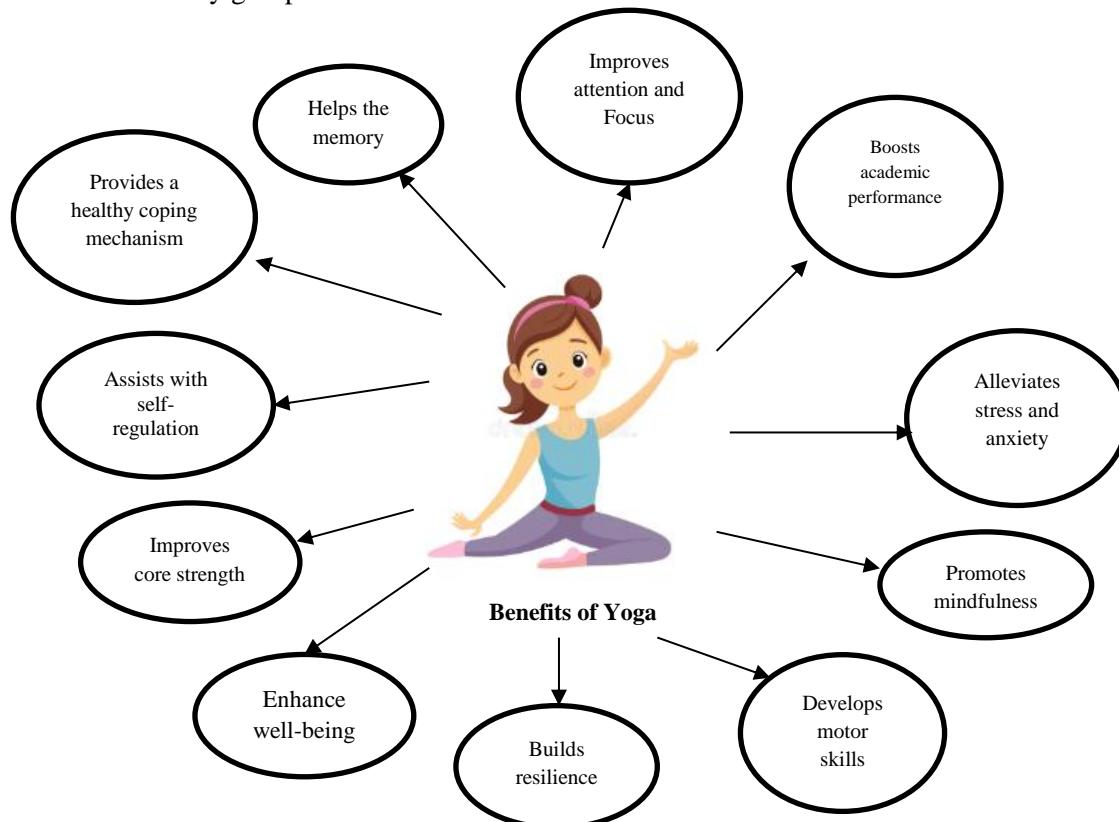


Figure 1. Mental Health Benefits of Yoga

The yoga community spends an astounding USD 27 billion on yoga products each year. Figure 1 is only for one nation, and it has been progressively increasing over time.

1.1 Problem Statement

Although yoga is becoming more widely acknowledged as a healthy lifestyle intervention, there isn't enough empirically supported data to show how it specifically affects vascular function. Current research frequently fails to show causal linkages between yoga practice and changes in vascular health, depends on non-standardized intervention techniques, and insufficiently addresses vascular-specific outcomes. The issue of inadequate experimental data about the efficacy of yoga-based therapies in enhancing vascular function and averting vascular-related disorders is addressed by this study.

1.2 Major Contributions of the Study

The four main contributions of the current study are as follows:

- 1. Yoga-Based Vascular Benefits:** An Experimental Validation The physiological foundation of yoga in preventive healthcare is strengthened by this study's controlled experimental evidence of the effects of yoga-based therapies on vascular function.
- 2. Targeted Evaluation of Vascular Function Characteristics** By focussing on vascular-specific markers including blood pressure control, arterial compliance, and endothelial reactivity, the study fills a significant need in the body of knowledge about yoga and cardiovascular health.
- 3. Standardised Protocol for Yoga Intervention** The use of a structured and repeatable yoga regimen that incorporates asanas, pranayama, & relaxation techniques promotes methodological integrity and reproducibility in subsequent studies.
- 4. Consequences for the Prevention of Non-Pharmacological Diseases** The results validate the use of yoga-based therapies as an affordable, non-invasive method for improving vascular health and preventing cardiovascular and lifestyle-related illnesses at an early stage.

2. LITERATURE REVIEW

Vascular Function and Disease Prevention

In order to preserve cardiovascular health and stop the onset of chronic illnesses, vascular function is essential. Increased arterial stiffness and endothelial dysfunction are known to be early pathophysiological indicators that precede the development of metabolic disorders, hypertension, and cardiovascular disease [4]. Whereas pulse wave velocity (PWV) is regarded as the gold standard for evaluating arterial stiffness, flow-mediated dilation (FMD) is frequently employed as a non-invasive assessment of endothelial function. Increasing cardiovascular morbidity and mortality are closely linked to impairments in various vascular indicators, underscoring the significance of early vascular dysfunction therapies for successful disease prevention.

Physical Activity and Vascular Adaptations

Frequent exercise has been shown to enhance arterial compliance and endothelial function. By increasing shear stress [5], aerobic exercise increases endothelial nitric oxide synthesis, which improves vasodilatory capacity and lessens arterial stiffness. Numerous studies have shown that structured exercise programs significantly reduce PWV and improve FMD. However, due to physical restrictions, time constraints, or accessibility issues, many groups still struggle to stick to

traditional exercise regimens. Alternate kinds of fitness that provide vascular benefits with less physical effort have become more popular as a result.

Yoga as a Mind–Body Intervention

Yoga is a classic mind–body exercise that incorporates relaxation techniques, controlled breathing, and physical postures [6]. Yoga tackles the physical, autonomic, along with psychological aspects of health all at once, in contrast to traditional exercise. According to new research, yoga may improve vascular function by lowering sympathetic nervous system activity, increasing parasympathetic modulation, and enhancing physiological reactions to stress. Since endothelial dysfunction including arterial stiffness are known to be caused by autonomic imbalance as well as chronic stress, these consequences are especially pertinent to vascular health.

Yoga and Endothelial Function

Endothelial function has been shown to improve after yoga-based therapies in a number of experimental trials [7]. Improved endothelial signalling pathways, decreased oxidative stress, and increased nitric oxide bioavailability have all been linked to improvements in FMD seen in these investigations. By modifying respiratory–cardiovascular coupling and lowering vascular inflammation, controlled breathing techniques such slow pranayama have been demonstrated to enhance endothelial responsiveness. Despite reports of favourable results, many research are constrained by small sample groups, inconsistent yoga practices, and brief intervention periods.

Yoga and Arterial Stiffness

Promising findings have been found in studies looking at how yoga affects vascular stiffness. Enhanced arterial elasticity and decreased vascular ageing are suggested by decreases in PWV after yoga therapies. Reduced sympathetic vasoconstrictor tone, better relaxation of vascular smooth muscles, and improved autonomic balance are thought to be the causes of these changes. However, there are still few studies that particularly target central arterial stiffness via gold-standard metrics like carotid-femoral PWV [8], which emphasises the need for more experimental study.

Yoga, Blood Pressure, and Hemodynamic Regulation

In each normotensive and hypertensive groups, yoga-based therapies have continuously shown antihypertensive effects. Both systolic and diastolic reductions have been associated with increased parasympathetic activity, reduced peripheral vascular resistance, along with improved baroreflex sensitivity [9]. These improvements in haemo-dynamics are strongly linked to increases in arterial compliance and endothelial function, indicating that yoga may have integrated effects on several vascular regulating systems.

3. METHODS AND MATERIALS

3.1 Study Design

The effects of an organised yoga-based treatment on vascular function as well as certain physical health markers were examined in this study using a prospective pre-test and post-test approach. By analysing vascular measurements taken before and following the intervention period, the design made it possible to evaluate the physiological modifications brought about by the intervention. To guarantee accuracy of measurements and internal validity [10], all evaluations were carried out in standardised laboratory settings.

3.2 Participants

Purposive sampling was used to find healthy adult participants. Those between the ages of 20 and 45 who had no history of inflammatory, metabolic [11], or cardiovascular conditions as well as no past participation in organised yogic or endurance training regimens matched the inclusion criteria. Smoking, high blood pressure, diabetes mellitus, current medications that impact vascular tone, and musculoskeletal disorders that restrict physical activity were among the exclusion criteria. Prior to enrolment, all participants provided written informed permission, and the Institutional Ethics Committee approved the study procedure in compliance alongside the Declaration of Helsinki.

3.3 Yoga-Based Intervention Protocol

Over the course of eight weeks, the yoga-based therapy was carried out five days a week under supervision. Every session adhered to a set protocol and lasted roughly sixty minutes [12]. The program included both static and dynamic asanas that targeted major muscle groups to increase vascular shear stress and peripheral blood flow, followed by pranayama exercises that emphasised calm, deliberate breathing to improve endothelium responsiveness and autonomic regulation. In order to encourage physiological responses and vascular healing, sessions ended with guided relaxation. To guarantee consistency and participant safety, a professional yoga instructor oversaw each session.

3.4 Vascular Data Collection Procedure

Vascular evaluations were carried out both before and after the intervention period ended. After at least ten minutes of supine rest, measurements were taken in a calm, temperature-controlled facility. Before the test [13], participants were told to avoid alcohol, caffeine, and strenuous exercise for no less than 24 hours. To reduce circadian impacts, all vascular measures were taken at the exact same time of day.

3.5 Assessment of Endothelial Function

Brachial artery flow-mediated dilation (FMD) was used to measure endothelial function in accordance with accepted ultrasonography protocols. High-resolution Doppler ultrasonography was used to measure the baseline artery diameter. To cause artery occlusion, a pneumatic cuff was applied to the forearm and raised to suprasystolic pressure for five minutes. Reactive hyperaemia was noted and the maximal post-occlusion artery diameter was assessed upon cuff removal. As a measure of endothelium-dependent vasodilation, FMD was computed as the percentage increase compared to baseline diameter.

3.6 Measurement of Arterial Stiffness (Pulse Wave Velocity)

Carotid-femoral pulse wave velocity (PWV), which is regarded as the gold standard for determining central arterial stiffness, was used to measure arterial stiffness. Applanation tonometry was used to simultaneously record pulse waveforms at the femoral and carotid arteries. PWV was computed as the ratio of distances to pulse transit time once the travel distance between recording locations was recorded. Improved vascular compliance after the intervention was demonstrated by lower PWV values.

3.7 Blood Pressure and Hemodynamic Parameters

An automated oscillometric instrument was used to monitor resting diastolic as well as systolic blood in accordance with regular operating practices. Following a period of sat rest,

measurements were made in triplicate, and the average result was utilised for analysis. To evaluate total haemodynamic regulation, average arterial pressure & pulse rate were then calculated.

3.8 Types of Yoga

Since our lives are constantly changing, it stands to reason that our exposure to new ideas has influenced how we practice yoga. We now have several options to consider by adopting a more modern style or incorporating new inventions. Yoga's various forms have contributed to its long-term popularity over thousands of years. There is something for everyone when it comes to practicing this ancient form of exercise [14]. We focused on some widely available and famous types of yoga to help you find one that works best for you and your daily lifestyle. An illustration of these yoga types is shown in Figure 2.

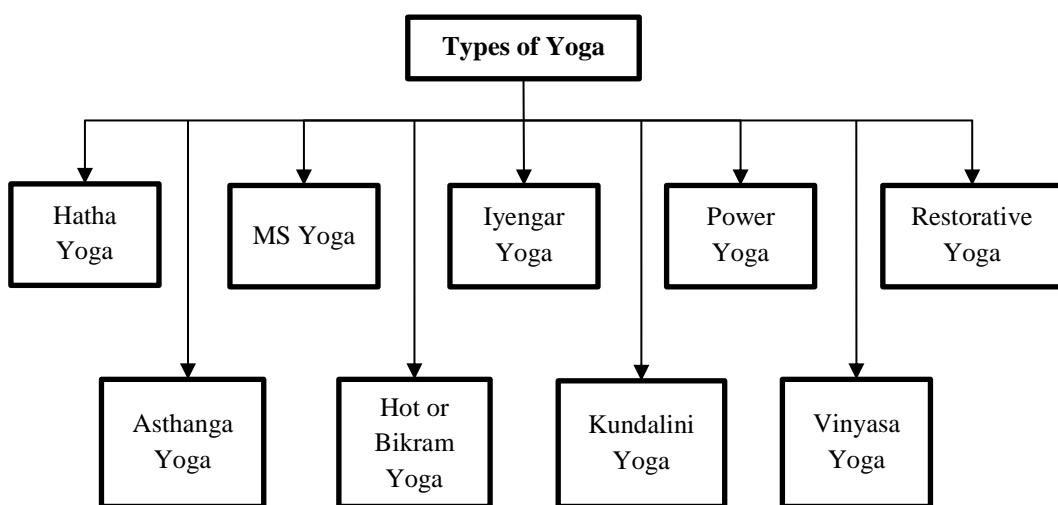


Figure 2. Some of the most popular types of yoga

Hatha Yoga

Hatha yoga uses physical methods to channel and hold onto vital power or energy. While a class is marketed as "Hatha," it's typically a gentler, slower approach with key poses suitable for beginners in yoga. Uncertain in its beginnings, Hatha yoga sought to achieve spiritual purity through body mastery. Similar to many commercial yoga sessions, it is still commonly defined as a combination of breathing exercises (pranayama), meditation, and positions or postures (asanas). During a session, you are more probable to experience physical activity than a mystical experience.

Asthanga Yoga

Ashtanga yoga is a challenging and difficult technique that adheres to a predetermined order. In the middle of the 20th century, Indian yoga master K. Pattabhi Jois introduced and popularised this form of yoga. The term alludes to the smooth transitions between positions in this variation of vinyasa yoga. The six sets of unique asanas used in Ashtanga are accompanied by concerted breath work and build upon each other. It is a demanding exercise that promises to improve flexibility and physical endurance. Completing difficult sequences requires mindfulness, which may have positive impacts on mindfulness. Many individuals reported feeling happier and more confident, as well as experiencing less stress and food cravings. Ashtanga yoga is a bit harder than other forms of yoga, so it might be worth a try if you're trying to lose weight. Ashtanga is often mistaken for power yoga, as it's equally athletic but lacks a set structure. In order to increase the effort level and make practicing more difficult for seasoned students, teachers often desire to design unique vinyasa flow sequences.

Hot or Bikram Yoga

Bikram Choudhury, an American yoga guru who was born in India and emigrated to the United States in 1971, established Bikram yoga, which became well-known throughout the world in the 1990s thanks to a number of famous practitioners. This style of yoga simulates the temperature with two breathing exercises and a set series of 26 postures. The chamber has a 40% humidity level and is heated to 104 °F (40 °C). Hot yoga may not follow the same sequence of poses, even if Bikram yoga was likely the inspiration. Because of the heat, participants are said to become more flexible, sweat to purify themselves, and work harder to keep their body temperature stable. Indeed, a study that was released revealed that 12 Bikram yoga sessions enhanced cardiovascular fitness.

There is evidence that Bikram yoga improves metabolic markers like blood lipids, insulin resistance, and tolerance for glucose, according to a published review. Put another way, people who are prone to conditions like type II diabetes as well as cardiovascular disease might benefit from it. Furthermore, one of the reviewed researches showed that incorporating physical postures and breathing exercises encouraged the mind to be present, which resulted in an increase in mindfulness with a reduction in study participants' perceived stress at the end of the study.

Using physical positions and breathing techniques also made study participants feel less stressed and more aware at the end of the trial, according to one of the reviewed studies.

Iyengar Yoga

This style of yoga was developed in India during the 1970s by B.K.S. Iyengar, and its primary focusses are postural alignment and precision. Props that participants can use to help their bodies maintain ideal postural alignment include yoga blocks, elastics, blankets, and cushions. This kind of yoga requires a lot of focus to achieve proper posture alignment and the ability to hold the asanas for prolonged periods of time, even if it is slower than Ashtanga or Bikram.

This kind of yoga can benefit people who are recuperating following an injury or who are especially rigid since props allow people to achieve the necessary poses without overstretching. In just six weeks, respondents' flexibility increased when they practiced Iyengar yoga once a week. Researchers found that Iyengar yoga practitioners experienced a significant reduction in persistent lower back discomfort. If you're looking for a technique to cure back pain or other issues, this type of yoga might be a great option to try, but we always recommend consulting a doctor before starting any new exercise regimen.

Kundalini Yoga

Although its precise roots are uncertain, Yogi Bhajan brought Kundalini yoga, which is believed to have started around 1000 BC, to the United States in the 1970s. It blends breath, sound, and movement in a form of song or chanting. The purpose of Kundalini is to awaken the spiritual force at the lowest point of your spine, known as the shakti. A typical yoga class starts with an introduction chant, moves through a series of breathing techniques and poses, and ends with a song or meditation.

Kundalini yoga's premise states that by directing energy upward through the lowest point of our spines to the tops of our heads, we may activate our chakras, or energy centres. Among other health advantages, this will improve our mood, focus, cholesterol levels, metabolism, and strength. Do you find it difficult to fall asleep? Following eight weeks of Kundalini yoga practice, participants' average sleep duration increased by 36 minutes per night.

Power Yoga

Power yoga, which has ashtanga roots and is similar to vinyasa yoga, is less regimented and more up to instructor interpretation. Chun states that "power yoga is generally highly physical and accomplished at a faster tempo than other types of yoga". Sleik keeps going, "Power yoga improves mobility while also developing the muscles". While different sequences keeping the brain active, every muscle group in the body works. In order to help newcomers get acclimated to this difficult activity, several studios combine power yoga with slow-flow yoga. Power yoga can be done in both hot and cold temperatures. Buti yoga, which is comparable to power yoga but also includes tribal dance, primal gestures, and a lot of core work, may appeal to power yoga enthusiasts.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Key vascular and haemodynamic measures showed notable improvements after the yoga-based intervention. In comparison to baseline values, flow-mediated dilation showed a significant increase, suggesting improved endothelium-dependent vasodilation. Improved vascular compliance and decreased central arterial stiffness were reflected in the notable decrease in pulse wave velocity. Following the intervention, there were favourable drops in mean arterial pressure & pulse pressure along with a significant decrease in resting systolic as well as diastolic blood pressure values.

Furthermore, there was a notable decrease in resting heart rate, indicating better autonomic control and cardiovascular effectiveness. Effect size analysis revealed moderate to significant magnitudes of change in these vascular adaptations, which were consistently seen in all subjects. Overall, the results show that the yoga-related intervention produced significant physiological changes in vascular function, demonstrating its potential to improve physical health and prevent disease.

4.1 Comparison with Existing Vascular Studies

The current results are in line with earlier studies that shown that yoga and mind-body therapies improved vascular function. [15] This study's improvement in flow-mediated dilation is consistent with previous experimental studies showing improved endothelium reactivity after slow-breathing and yoga therapies. Previous research has linked these gains to lower oxidative stress and higher nitric oxide bioavailability, both of which are essential for preserving endothelium integrity. The amount of FMD improvement seen in this trial is similar to that seen in therapies including moderate-intensity aerobic exercise, suggesting yoga as a good substitute for people who are unable to participate in traditional exercise regimens.

This study's findings of a decrease in pulse wave velocity are consistent with previous research showing that yoga-based therapies lessen arterial stiffness. Reduced central arterial stiffness has been linked to enhanced vascular smooth muscle relaxation and lower sympathetic activity, according to earlier vascular research. By showing that a systematic yoga regimen that incorporates dynamic poses and pranayama can successfully enhance central artery elasticity—a crucial factor in cardiovascular risk—the current research adds to the body of knowledge.

The current study's systolic as well as diastolic reductions are in line with earlier clinical trials that found yoga therapies to have antihypertensive benefits. Previous research indicates that improved baroreflex sensitivity and reduced peripheral vascular resistance are the mechanisms

underlying these blood pressure drops. The current investigation demonstrates concomitant improvements in autonomic control and vascular compliance, supporting these pathways.

Table 1. Baseline and Post-Intervention Comparison of Vascular Function Parameters

Vascular Parameters	Baseline (Mean \pm SD)	Post-Intervention (Mean \pm SD)	t value	p value
Flow-Mediated Dilation (%)	6.42 \pm 1.15	9.18 \pm 1.32	6.84	< 0.001*
Pulse Wave Velocity (m/s)	8.21 \pm 0.94	6.97 \pm 0.88	5.73	< 0.001*
Systolic Blood Pressure (mmHg)	128.6 \pm 8.4	120.3 \pm 7.6	4.91	< 0.001*
Diastolic Blood Pressure (mmHg)	82.4 \pm 6.1	76.1 \pm 5.8	4.36	< 0.001*
Mean Arterial Pressure (mmHg)	97.8 \pm 6.9	90.8 \pm 6.2	4.58	< 0.001*
Resting Heart Rate (beats/min)	74.2 \pm 5.6	68.1 \pm 5.2	4.12	< 0.001*

The observed decrease in resting heart rate supports previous findings that yoga practice improves parasympathetic dominance in Table 1. Autonomous regulation & vascular health are closely related, as evidenced by the substantial correlation between increased vagal tone and better endothelial function and decreased inflammatory burden.

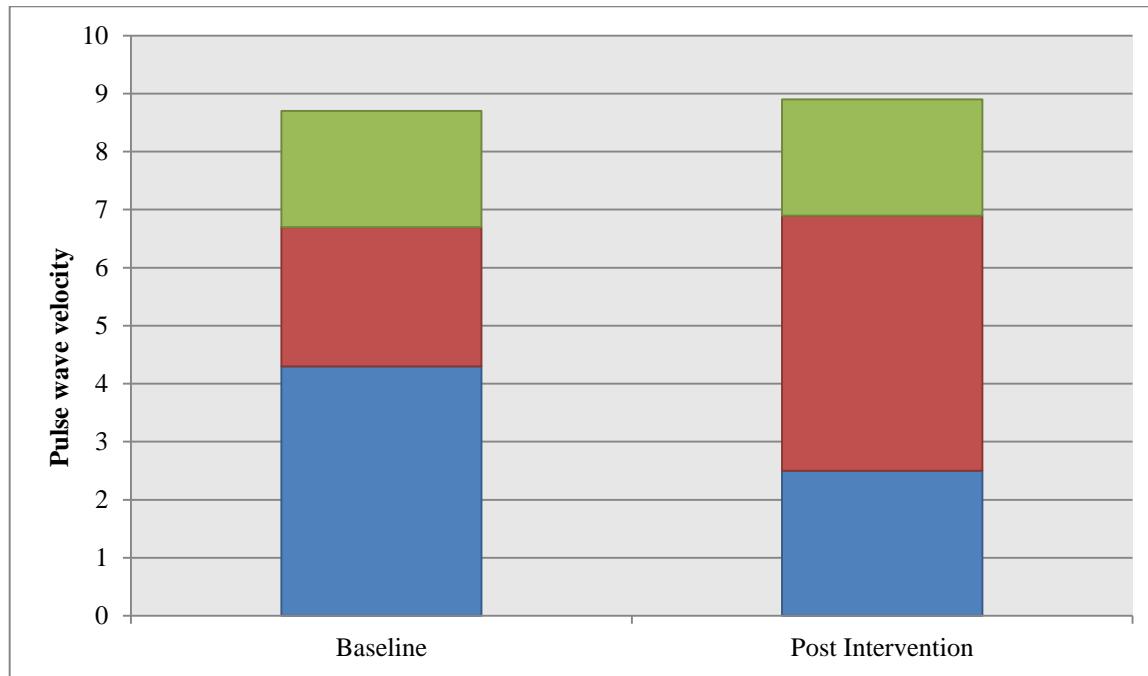


Figure 3. Comparison of Pulse Wave Velocity (PWV) Values at Baseline and Post-Intervention

After the yoga-based intervention, the carotid-femoral pulse wave velocity significantly decreased, as seen in Figure 3, suggesting increased arterial compliance and decreased central arterial stiffness.

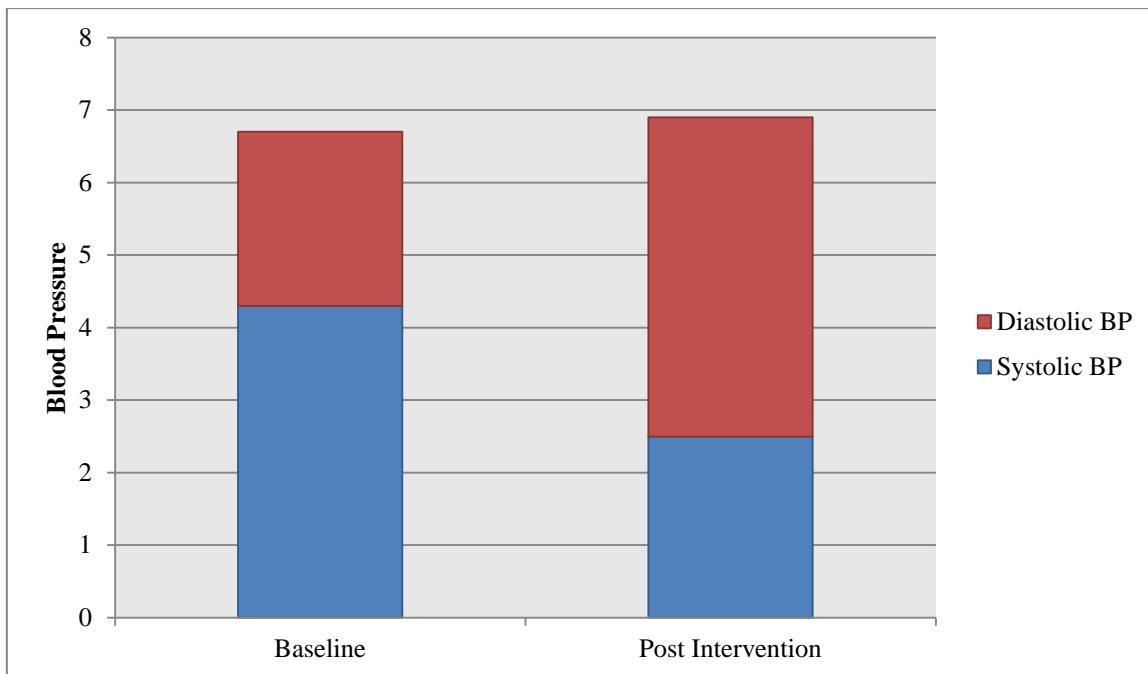


Figure 4. Changes in Systolic and Diastolic Blood Pressure Following the Yoga-Based Intervention

Following the conclusion of the yoga-based therapy, Figure 4 shows notable drops in systolic as well as diastolic blood suggesting better haemodynamic regulation and decreased vascular resistance.

Discussion

The current experimental work shows that vascular function and important haemodynamic parameters related to physical well-being and avoiding illnesses are considerably improved by a systematic yoga-based intervention. Strong evidence that yoga practice improves endothelial function, arterial stiffness, and cardiovascular regulation is provided by the reported improvements in blood pressure, pulse wave velocity, and flow-mediated dilation.

Enhanced endothelium-dependent vasodilation, a vital indicator of arterial health and an early indicator of cardiovascular disease risk, is indicated by the notable rise in flow-mediated dilation. Enhanced FMD indicates higher endothelial nitric oxide synthesis activity and nitric oxide bioavailability. Recurrent exposure to shear stress while dynamic yoga poses, which activate endothelial mechanotransduction pathways, is probably what causes these changes. Additionally, by lowering oxidative stress and enhancing autonomic balance, the controlled breathing techniques used during pranayama may further improve endothelial responsiveness.

Reduced central arterial stiffness and increased arterial flexibility are reflected in the decrease in pulse wave velocity seen after the intervention. A favourable reversal of early vascular ageing is suggested by a decrease in arterial stiffness, which is a known independently prediction of cardiovascular morbidity and mortality. While the relaxing aspect of yoga lowers sympathetic vasoconstrictor tone, the mixture of static and dynamic muscular activity during yoga poses may increase vascular smooth muscle function, all of which contribute to enhanced arterial compliance.

The vascular advantages of the yoga-based therapy are further supported by notable drops in both diastolic and systolic blood pressure. Reduced peripheral vascular resistance, increased baroreflex sensitivity, and better autonomous nervous system regulation are probably the mechanisms underlying improved blood pressure regulation. Increased parasympathetic dominance

and enhanced cardiac efficiency, which are strongly associated with endothelial health and vascular function, are indicated by the observed decrease in resting heart rate.

The results of this study are in line with previous vascular research that shows how mind-body therapies improve endothelial function as well as arterial stiffness. Crucially, the degree of improvement seen in important vascular parameters is similar to that noted in interventions involving moderate-intensity aerobic exercise, highlighting yoga's potential as a successful substitute or supplemental strategy for people with limited capacity for conventional exercise.

Since vascular dysfunction occurs before the clinical signs of metabolic and cardiovascular illnesses, improvement in endothelial function & arterial compliance are especially important from the standpoint of disease prevention. Yoga-based therapies may be essential to preventive healthcare programs since they target early physiological signs of illness risk.

Notwithstanding the encouraging results, it is important to recognise some limits. The study's limited sample size and comparatively brief intervention period may restrict its generalisability. Mechanistic interpretation is further limited by the lack of biochemical endothelium indicators like nitric oxide or inflammatory cytokines. To better understand the mechanisms behind yoga-induced vascular adaptations, future research should include longer follow-up periods, larger and more diverse communities, and biochemical evaluations.

5. CONCLUSION

The current study comes to the conclusion that yoga-based therapies greatly improve haemodynamic regulation and vascular function, which helps to promote physical health and avoid disease. Yoga is a successful non-pharmacological method of lowering cardiovascular risk, as evidenced by improvements in blood pressure, arterial stiffness, and endothelial function.

By enhancing endothelial responsiveness, arterial flexibility, and autonomic balance, regular practice of systematic yoga programs that incorporate asanas, pranayama, and methods of relaxation can have a positive impact on vascular physiology. The inclusion of yoga into preventive medicine and lifestyles management programs to lessen the burden of cardiovascular & lifestyles-related disorders is supported by these findings.

To sum up, yoga-based therapies are an accessible, affordable, and safe way to improve vascular health and encourage long-term physical well-being. To improve the evidence foundation and enable wider therapeutic applicability, more research using larger cohorts and sophisticated vascular biomarkers is necessary.

REFERENCES

- [1] Pundir, M., Das, M., Yadav, V. S., & Patra, S. (2024). Effectiveness of Yoga-Based Interventions on Vascular Health: A Comprehensive Review. *International Journal of Endovascular Treatment and Innovative Techniques*, 5(2), 57-65.
- [2] Sukumaran, S., Saroj, U. R., & Bisht, D. (2024). Emerging Trends in Yoga-Based Interventions for Cardiovascular Disease Prevention: A Literature Review. *International Journal of Ayurveda360*, 1(3), 94-105.
- [3] Paramashiva, P. S., Sukumar, S., Shettigar, D., Kadavigere, R., Pradhan, A., Panakkal, N. C., ... & David, L. R. (2025). Comparing the Effects of Yoga and Exercise on Vascular Function: A Systematic Review. *Advances in Integrative Medicine*, 100556.

- [4] Neto, M. G., Saquetto, M. B., Roever, L., & Carvalho, V. O. (2024). The effect of yoga intervention on psychological symptoms, health-related quality of life, and cardiovascular risk factors in people with coronary artery disease: A systematic review and meta-analysis. *Heart and Mind*, 8(4), 300-309.
- [5] Rathore, M., Verma, M., Abraham, J., Dada, R., & Kumar, M. (2023). Impact of “yoga based lifestyle interventions” and its implications on health and disease. *Int Res J Ayurveda Yoga*, 6, 64-73.
- [6] Bruce, C., Achan, V., & Rathore, S. (2021). Yoga-based cardiac rehabilitation: current perspectives from randomized controlled trials in coronary artery disease. *Vascular Health and Risk Management*, 779-789.
- [7] Kalra, S., Miraj, M., Ajmera, P., Shaik, R. A., Seyam, M. K., Shawky, G. M., ... & Ahmad, F. (2022). Effects of yogic interventions on patients diagnosed with cardiac diseases. a systematic review and meta-analysis. *Frontiers in Cardiovascular Medicine*, 9, 942740.
- [8] Patil, S. G., Sobitharaj, E. C., Chandrasekaran, A. M., Patil, S. S., Singh, K., Gupta, R., ... & Prabhakaran, D. (2024). Effect of yoga-based cardiac rehabilitation program on endothelial function, oxidative stress, and inflammatory markers in acute myocardial infarction: A randomized controlled trial. *International journal of yoga*, 17(1), 20-28.
- [9] Rao, A., Kacker, S., & Saboo, N. (2022). The effects of yoga on cardiovascular risk factors. *International Journal of Endocrinology (Ukraine)*, 18(7), 396-403.
- [10] Kapoor, G., Singh, S., Chauhan, P., Chahal, A., & Gugnani, A. (2022). Yoga in Arterial Stiffness: A Review. *Journal of Health Science and Medical Research*, 40(5), 599-606.
- [11] Koncz, Á., Csala, B., Körmendi, J., Horváth, Á., Dömötör, Z., Selmeci, C., ... & Boros, S. (2024). Effects of a complex yoga-based intervention on physical characteristics. *Biologia futura*, 75(1), 73-84.
- [12] Verma, S., Hatwal, J., & Batta, A. (2024). Impact of Yoga beyond Physical Training on the Cardiovascular System: An Updated Review. *The Journal of Tehran University Heart Center*, 19(2), 79.
- [13] Snigdha, A., Majumdar, V., Manjunath, N. K., & Jose, A. (2024). Yoga-based lifestyle intervention for healthy ageing in older adults: a two-armed, waitlist randomized controlled trial with multiple primary outcomes. *GeroScience*, 46(6), 6039-6054.
- [14] Shashikiran, H. C., Sreegovind, R., & Krithika, A. R. (2023). Impact of naturopathy and yoga based intervention on atherosclerotic cardiovascular disease risk among metabolic syndrome individuals—A prospective single arm study. *Brain Behavior and Immunity Integrative*, 4, 100020.
- [15] Sorout, J., Kacker, S., Saboo, N., & Kumar, M. (2024). Yoga and nutritional therapies for promoting health-related quality of life in persons with metabolic syndrome—An interventional observational study. *Journal of Family Medicine and Primary Care*, 13(8), 3017-3025.